# Gut microbiome signature associated with mycophenolate mofetil enterohepatic recirculation.

Guillaume Onyeaghala<sup>1</sup>, Duy Vo<sup>1</sup>, Bryan Sanchez<sup>2</sup>, Abdelrahman Saqr<sup>3</sup>, Moataz Mohamed<sup>3</sup>, Christopher Staley<sup>3</sup>, Levi Teigen<sup>3</sup>, Casey Dorr<sup>1,2</sup>, Weihua Guan<sup>3</sup>, Rasha El-Rifai<sup>3</sup>, Pamala Jacobson<sup>3</sup>, Ajay Israni<sup>1</sup>

<sup>1</sup>University of Texas Medical Branch, Galveston, <sup>2</sup>Hennepin Healthcare Research Institute, Minneapolis, <sup>3</sup>University of Minnesota, Minneapolis



# INTRODUCTION

utmb Health.

- Mycophenolate mofetil (MMF) is used in >90% of kidney transplant recipients (KTRs) for immunosuppresion.
- MMF is bio-transformed to mycophenolic acid (MPA), the active metabolite, and MPA glucuronide (MPAG), an inactive metabolite (MPAG). MPAG is metabolized by gut microbiota, particularly by beta-glucuronidase (β-GUS) producers, and MPA is reabsorbed into the blood in a process know as enterohepatic recirculation (EHR).
- EHR leads to a secondary MPA peak, increasing MPA blood concentrations, enhancing immunosuppression and possibly toxicity in KTRs.

## **HYPOTHESIS**

 We hypothesized that KTRs with extensive EHR in-vivo would have a distinct gut microbiome signature associated with EHR.

## **METHODS**

- Participants (n=84, 37 prospective and 47 crosssectional) underwent a pharmacokinetic (PK) study and microbiome stool collection post-kidney-transplant in the Microbiome and Immunosuppression in Kidney Transplantation (MISSION) study.
- A stool sample and 24-hour food recall was collected at the time of the PK study.
- Shotgun sequencing data from the stool samples were processed using HUMAnN 3.7 and analyzed with MaAsLin2. Zero inflated Poisson regression models were used for a-priori univariate analyses.
- Our main outcome was the MPA % EHR, defined as MPA AUC<sub>5-12</sub> / AUC<sub>0-12</sub> x 100.
  - In a secondary analysis, we also investigated the following PK parameters: MPA % EHR stratified in tertiles, MPAG AUC, MPA AUC to MPAG AUC between 5 and 12 hrs (window of secondary peak)

#### Table 1. Participant demographic and baseline characteristics

| Variable                                   |                    | Cohort                  |                    |  |
|--------------------------------------------|--------------------|-------------------------|--------------------|--|
|                                            | Prospective (N=37) | Cross-sectional (N= 47) | Full Cohort (N=84) |  |
| Age at PK assessment, yr, mean (SD)        | 53.7 (14.1)        | 57.3 (12.8)             | 55.4 (13.4)        |  |
| Gender, n (%)                              |                    |                         |                    |  |
| Female                                     | 12 (32.4)          | 11 (23.4)               | 23 (27.4)          |  |
| Male                                       | 25 (67.6)          | 36 (76.6)               | 61 (72.6)          |  |
| Ancestry, n (%)                            |                    |                         |                    |  |
| European                                   | 26 (70.2)          | 33 (70.2)               | 59 (70.2)          |  |
| Black or African American                  | 8 (21.6)           | 10 (21.3)               | 18 (21.4)          |  |
| Asian or Pacific Islander                  | 2 (5.4)            | 1 (2.1)                 | 3 (3.6)            |  |
| Native American                            | N/A                | 2 (4.2)                 | 2 (2.4)            |  |
| Unreported                                 | 1 (2.7)            | 1 (2.1)                 | 2 (2.4)            |  |
| eGFR, ml/min/1.73m2, mean (SD)*            | 59.2 (15.3)        | 69.8 (18.2)             | 65.13 (17.69)      |  |
| Total bilirubin, mg/dL, mean (SD)          | 0.46 (0.57)        | 0.61 (0.32)             | 0.54 (0.45)        |  |
| MMF daily dose, mg, mean (sd)              | 1234.0 (411.8)     | 1405.4 (302.5)          | 1309.5 (375.5)     |  |
| MPA AUC0-12 hr, mg.h/L, mean (SD)          | 47.0 (15.2)        | 42.6 (17.9)             | 44.6 (16.8)        |  |
| MPA EHR (AUC5-12 hr/AUC0-12 hr), mean (SD) | 0.44 (0.10)        | 0.38 (0.07)             | 0.41 (0.09)        |  |

\*eGFR, estimated glomerular filtration rate. Calculated using race-free eGFR equation.



**Figure 1: Enterohepatic recirculation variability among KTRs.** Enterohepatic recirculation (EHR) was calculated as the ratio of MPA area under the concentration curve (AUC) for hours 5-12 to AUC for hours 0-12.

Table 2. Association between bacterial taxa and MPA EHR in the full cohort (n=84) at the time of PK

| Organism prevalence in full cohort | p-value                                        |
|------------------------------------|------------------------------------------------|
| 13.10%                             | 0.004                                          |
| 16.70%                             | 0.005                                          |
| 63.10%                             | 0.008                                          |
| 36.90%                             | 0.015                                          |
| 23.80%                             | 0.024                                          |
| 11.90%                             | 0.029                                          |
|                                    | 13.10%<br>16.70%<br>63.10%<br>36.90%<br>23.80% |

<sup>\*</sup>β-GUS producing organisms

†The p-value for the association was generated with MaAsLin2, adjusting for the cohort variable (prospective vs cross-sectional).

#### RESULTS

Figure 2. Shared microbiome taxa across multiple PK parameters



The microbial taxa in purple represent associations with the full cohort (n=84), whereas the microbial taxa in green and red represent associations with the prospective (n=37) and cross-sectional (n=47) cohorts, respectively. All associations were generated with MaAsLin2.

- MPA EHR was highly variable within KTRs, among both early (<6 months) KTRs and stable KTRs who have had a transplant for more than 2 years (Figure 1).
- Our microbiome association analysis identified several taxa which are possibly associated with MPA % EHR. However, the findings were not statistically significant after multiple hypothesis testing correction (FDR, Table 2).
- We did not find strong evidence of a consistent group of bacterial taxa associated with multiple PK parameters in our secondary analysis. The the reported taxa were not statistically significant after FDR (Figure 2).

#### CONCLUSIONS

- Our preliminary findings suggest that the relative abundance of gut taxa is associated with MPA % EHR in KTRs, some of which (*R. bromii, B. obeum and P. distasonis*) have been previously reported as β-GUS producing organisms.
- Larger studies including ascertainment of β-GUS activity are needed to understand the interplay between the gut microbiome and MPA EHR.