

Investigation of a Streptomyces nodosus glycosyltransferase

Guillaume C. Onyeaghala, Noelle J. Beyer

Chemistry Program, Department of Science

Southwest Minnesota State University, Marshall, MN 56258

Introduction

- Amphotericin B (AmB) is an antibiotic used to treat systemic fungal infections¹
- Naturally synthesized by Streptomyces nosodus²
- Potency is recognized but its uses are limited due to the toxic side effects for patients³
- One of the enzymes involved in the synthesis of AmB is AmphDI, a glycosyltransferase⁴
- Many glycosyltranferases can accept a variety of sugars are their substrate⁵
- Mycosamine sugar plays an important role in AmB's antifungal activity⁶

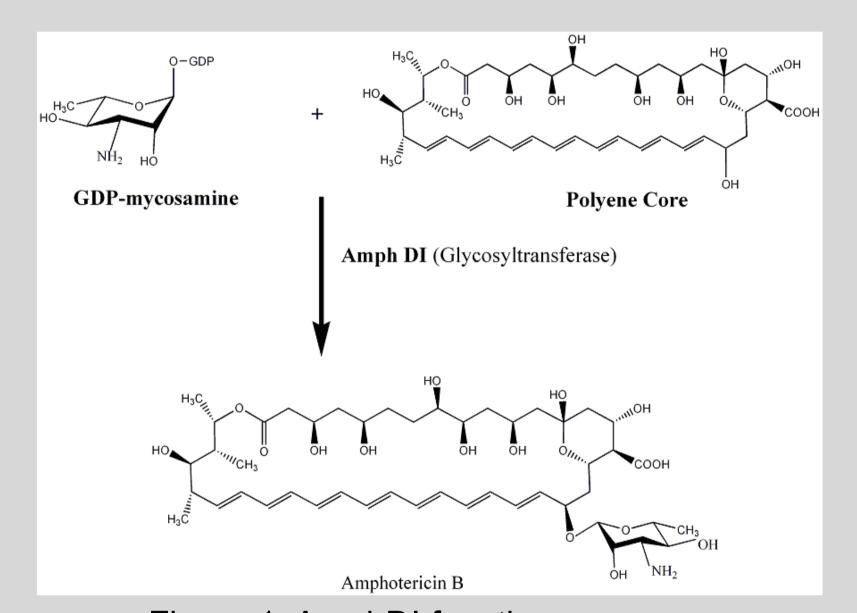


Figure 1. AmphDI function

Central Question

 Can the substitution of sugars attached to the polyene core of AmB alter its toxicity to humans and provide more potent antibiotics?

Research Goals

- Ascertain the expression of AmphDI in the Streptomyces venezuelae strain NJB122
- Isolate the plasmid AmphDI/pSE34 from *S. venezuelae* strains

Materials and Methods

- S. venezuelae (DHS7038) containing the pSE34 plasmid was the control strain (NJB115)
- S. venezuelae (DHS7038) containing the amphDI/pSE34 vector is the production strain (NJB122)
- Kanamycin and thiostrepton were used to select for the specific strains (50 mg/ml stock concentration)
- 50 uL spores cultured in 5ml TSB broth (50uL/ml Kan/Tsr) for 48 hours (seed cultures) followed by 48 hours in 50 ml SCM broth, both at 29°C

Materials and Methods

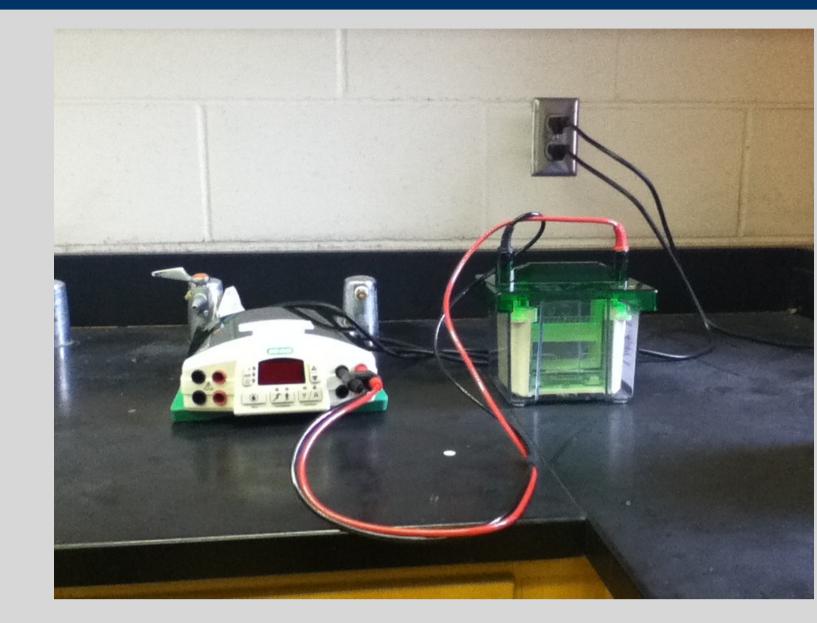


Figure 2. BioRad SDS-PAGE electrophoresis apparatus

BioRad SDS-PAGE electrophoresis

- Bacteria harvested by centrifugation
- Analyzed samples for S. venezuelae only, not E. coli
- Protein isolated using nickel resin from Promega
- Samples consisted of increasing concentrations of binding buffer + imidazole
- SDS-PAGE run on 10% Precise gel (Thermo Scientific) with Tris-HEPES running buffer
- Used constant current of 18 mA per gel

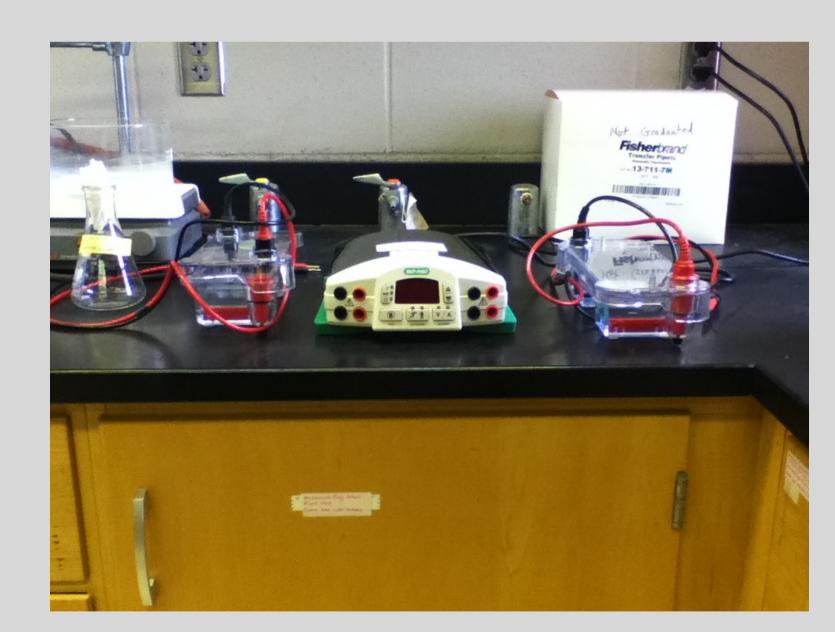


Figure 3. BioRad DNA gel electrophoresis apparatus

DNA purification method

- Plasmid DNA extraction with alkaline lysis preparation
- DNA digestion with HindIII
- Digestion samples incubated for 1 hour at 37°C
- Analyzed on 0.7% agarose gel in 1x TAE buffer
- Gel run using constant voltage 80V
- Product expected size

7.5 (vector) + 1.4 (gene) = \sim 9 kb²

Results – SDS-PAGE analysis

- Marker used was prestained protein ladder
- Expected size of AmphDI protein is 53.8 kDa²
- Observed bands in both control strain (115) and production strain (122) around expected size of AmphDI
- Protein bands in control strain much lighter than in production strain – may not be AmphDl protein

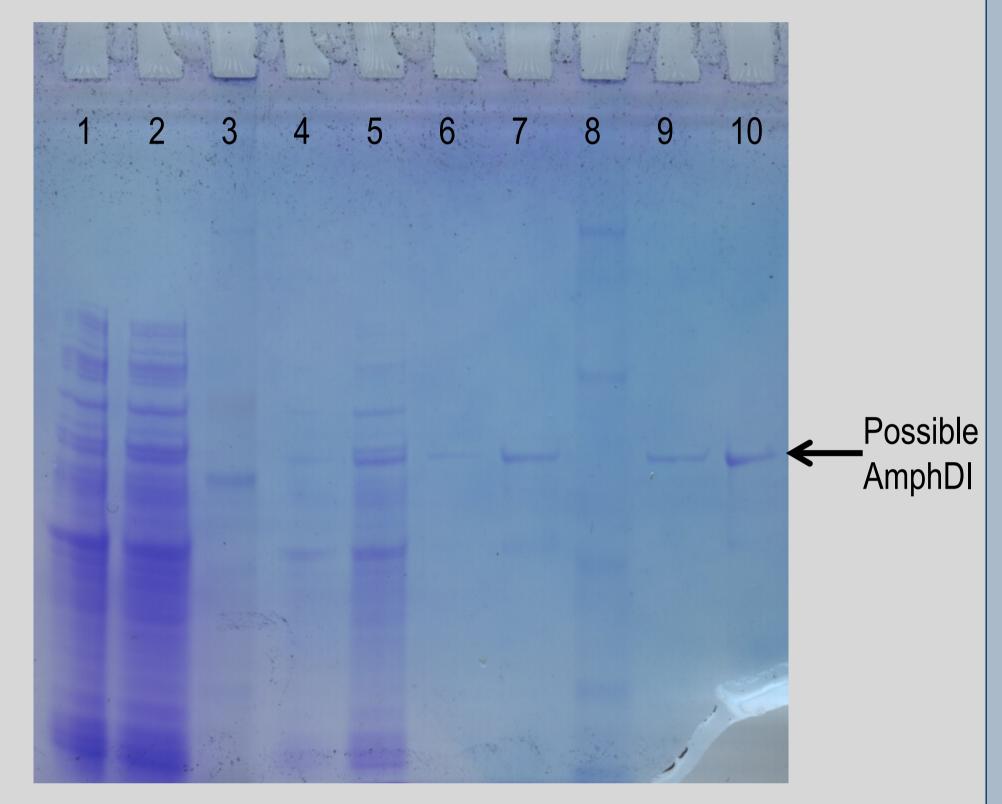


Figure 4. SDS-PAGE gel for *S. venezuelae* 115/122: lane 1 10mM 115, lane 2 10mM 122, lane 3 marker, lane 4 30 mM 115, lane 5 30 mM 122 lane 6 50 mM 115, lane 7 30mM 122, lane 8 marker, lane 9 250mM 115, lane 10 250 mM 122

Results – DNA gel electrophoresis

- Marker used was New England Biolab 1kb ladder
- Visualized plasmid DNA isolated from 115 or 122 after digestion with HindIII
- Observed a difference between 115 and 122 lanes

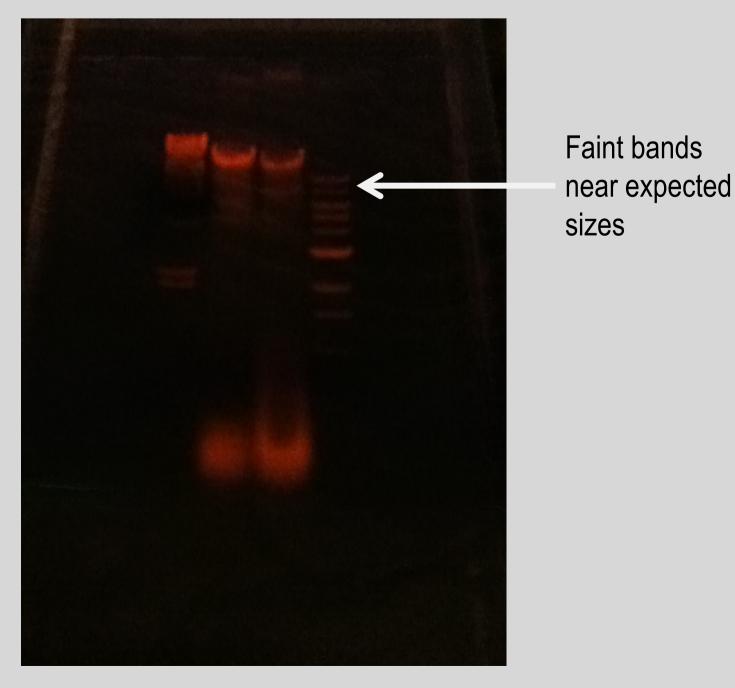


Figure 5. DNA gel for *S. venezuelae* 115/122 plasmid isolation: lane 1 marker ,lane 2 115, lane 3 122, lane 4 marker.

Conclusions

- amphDI gene appears to be present in pSE34 construct in production strain of *S. venezuelae* (NJB122) but not in control strain (115)
- Protein of size similar to AmphDI appears to be present in both control strain and production strain of S. venezuelae
- Need to determine identity of protein observed by SDS-PAGE in production strain NJB122
 - Gene is present in plasmid construct, but protein expression is not certain

Ongoing Research

- Obtain protein sample from NJB122 for amino acid sequence analysis
- Once identity of protein confirmed, grow large-scale cultures of NJB122 to mass produce AmphDI protein
- Study AmphDI catalyzed reaction with natural and alternative sugar substrates for novel compounds⁷

Acknowledgements

- Dr. Tony Greenfield of the Biology program for research assistance
- Southwest Minnesota State University Biology and Chemistry programs for providing supplies and lab equipment
- Southwest Minnesota State University for the Faculty Improvement Grant awarded
- Southwest Minnesota State University Chemistry Club for support and travel funding
- Charles Kost of the SMSU GIS Center for printing services & Linda Nelson of the Academic Commons for laminating services

Literature Cited

- 1. Caffrey, P., Aparicio, J. F., Malpartida, F., Zotchev, S. B. (2008) *Curr. Top. Med. Chem.* 8, 639-653.
- 2. Caffrey, P., Lynch, S., Flood, E., Finnman, S., Oliynyk, M. (2001) *Chem. Biol. 8, 713-723.*
- 3. Carmody, M., Murphy, B., Byrne, B., Power, P., Rai, D., Rawlings, B., Caffrey, P. (2005) *J. Biol. Chem.* 41, 34420-34426.
- 4. Hutchinson, E., Murphy, B., Dunne, T., Breen, C., Rawlings. B., Caffrey, P. (2010) *Chem. Biol.* 17,174-182.
- 5. Williams, G. J., Zhang, C., Thorson, J. S. (2007) *Nat. Chem. Biol.* 10, 657-662.
- 6. Nedal, A., Sletta, H, Brautaset, T, Borgos, S.E.F., Sekurova, O.N., Ellingsen, T.E., Zotchev, S.B. (2007) *Appl. Environ. Microbiol. 22, 7400-7407.*
- 7. Zhang, C., Moretti, R., Jiang, J., Thorson, J.S.(2008) *Chem. Biochem.* 9, 2506-2514.